Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement.

نویسندگان

  • Nigel W Moriarty
  • Dale E Tronrud
  • Paul D Adams
  • P Andrew Karplus
چکیده

Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common use today have been designed on the assumption that each type of bond or angle has a single ideal value that is independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and, as a first step towards using such information to build more accurate models, ultra-high-resolution protein crystal structures have been used to derive a conformation-dependent library (CDL) of restraints for the protein backbone [Berkholz et al. (2009) Structure 17, 1316-1325]. Here, we report the introduction of this CDL into the phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the CDL yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In phenix, use of the CDL can be selected by simply specifying the cdl = True option. This successful implementation paves the way for further aspects of the context dependence of ideal geometry to be characterized and applied to improve experimental and predictive modeling accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream.

Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriarty et al. (2014), FEBS...

متن کامل

A forward-looking suggestion for resolving the stereochemical restraints debate: ideal geometry functions.

# 2008 International Union of Crystallography Printed in Singapore – all rights reserved Jaskolski et al. (2007a) initiated a very important discussion (Jaskolski et al., 2007b; Stec, 2007; Tickle, 2007) about the accuracy of ideal geometry targets and the appropriate stringency with which they should be obeyed at various resolutions. All of the discussants agree that protein structures determi...

متن کامل

Improved ligand geometries in crystallographic refinement using AFITT in PHENIX

Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily describ...

متن کامل

Conformation-dependent restraints for polynucleotides: I. Clustering of the geometry of the phosphodiester group

The refinement of macromolecular structures is usually aided by prior stereochemical knowledge in the form of geometrical restraints. Such restraints are also used for the flexible sugar-phosphate backbones of nucleic acids. However, recent highly accurate structural studies of DNA suggest that the phosphate bond angles may have inadequate description in the existing stereochemical dictionaries...

متن کامل

Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution

Traditional methods for macromolecular refinement often have limited success at low resolution (3.0-3.5 Å or worse), producing models that score poorly on crystallographic and geometric validation criteria. To improve low-resolution refinement, knowledge from macromolecular chemistry and homology was used to add three new coordinate-restraint functions to the refinement program phenix.refine. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The FEBS journal

دوره 281 18  شماره 

صفحات  -

تاریخ انتشار 2014